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Abstract We construct an embedding of the Ree-Tits generalized octagon defined over
a field K in a 51-dimensional projective space over K arising from a 52-dimensional Lie
algebra J of type F4. This construction derives from a quadratic map (related to a ‘standard’
duality of F4) from the 26-dimensional module (see K. Coolsaet, Adv Geometry, to appear)
into J. (This embedding is full if and only if K is a perfect field.) We provide explicit for-
mulas for the coordinates of the points of the octagon in this embedding, in terms of their
Van Maldeghem coordinates. We apply these results to compute the dimensions of subspaces
generated by various special subsets of points of the octagon: the sets of points at a fixed
distance from a given point or a given line and the Suzuki suboctagons. The results depend
on whether X is the field of 2 elements, or not.
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AMS Classification 51E12

1 Introduction

In 1960 J. Tits constructed the first examples of (thick) generalized octagons, using the dis-
covery by R. Ree of the related twisted Chevalley groups of type 2Fy (in the perfect case)
[6-8]. These Ree—Tits octagons are characterized as the only octagons satisfying the Mouf-
ang condition. No other thick generalized octagons are known, except for some ‘free’ and
‘universal’ constructions (which in some sense do not really count).

While there exists a lot of literature on embedding theory of generalized quadrangles and
hexagons, for the octagons hardly anything is known. We hope that the description of the
51-dimensional embedding given here (together with that of the 25-dimensional embedding
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76 K. Coolsaet

in [1,2]) will make these rather unaccessible geometries easier to understand and will prove
useful in future investigations.

That the Ree—Tits octagons with base field K can be embedded into a 25-dimensional
projective space with the same base field, is a consequence of the fact that all points and
lines of a Ree-Tits octagon can be regarded as points and lines of a metasymplectic space
F which is closely related to the Lie algebra of type F4 over K (see for instance [5, Section
2.5]). The projective embedding derives from the 26-dimensional module for this algebra.

The same algebra also has a 52-dimensional module and this representation can be used
to provide an embedding of the hyperlines and planes of F as points and lines of a 51-dimen-
sional projective geometry. Because ‘hyperline’ and ‘plane’ are dual notions of, respectively,
‘point’ and ‘line’, and because in a sense the points and lines of the Ree—Tits octagons are
absolute elements of this duality, it will be no surprise that this 51-dimensional space can
also be used to represent the points of the Ree—Tits octagon.

As we did in [2] for the 25-dimensional embedding, we will establish explicit formulas
for the coordinates of points of the Ree-Tits octagon in this 51-dimensional space, in terms
of their Van Maldeghem coordinates. We will also derive the corresponding subdimensions
and study the subspaces generated by Suzuki suboctagons.

In Sect. 2 we will establish notations and review some of the material from [2] which is
needed for this text. Section 3 defines the 51-dimensional embedding and explains how to
compute the tables of Appendix A of projective coordinates for this embedding. Section 4
shows how these tables can be used to provide an embedding also in the non-perfect case.
Finally, we derive the dimensions of subspaces of points at a fixed distance of a given point
or line (Sect. 5) and of the subspace generated by the Suzuki suboctagons (Sect. 6).

2 Preliminaries

Recall that the elements of a root system ® of type F4 can be expressed as 4-tuples of real
coordinates in the following way [4] :

1. There are 24 roots whose coordinates are permutations of 4-tuples of the form
(£1,£1,0,0).

2. There are 16 roots with coordinates of the form (j:%, j:%, j:%, j:%).

3. There are eight roots whose coordinates are permutations of 4-tuples of the form
(£1,0,0,0).

Roots with Euclidian length +/2 are called long roots, roots with length 1 are called short
roots. We shall borrow the shorthand notation from [1], writing I for —1, + for % and — for
—%. (Examples of roots are 0110, +——+ or 0001.)

The root system @ can be used to establish a 52-dimensional Lie-algebra J over a field
K. J can be written as a direct sum

I=Go@PKE,

red

with 48 basis elements E,, one for each root r of ®, and a 4-dimensional subspace G which
is the so-called Cartan subalgebra or torus of J. The Cartan subalgebra is generated by a set
of elements H, with r € &, a basis of which is provided by choosing four values for r that
correspond to a fundamental system of ®. We will use the following basis :

def def def def
Hi=Hy1000 H2=Hyp1o: H3= Hygpgo Ha = H___.
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Ree-Tits generalized octagon 71

We will use the notation A[r], r € ®, and A[1], ..., A[4] for the coordinates of A € J in
terms of this basis. Hence A = >_ A[r]E, + A[1]H| + - - - + A[4]Ha.

Henceforth we will assume that the characteristic of K is 2. In this special case the ele-
ments Hz, Hy and Eg where s is restricted to the short roots, generate a 26-dimensional
subalgebra of J. This subalgebra is a 26-dimensional J-module. It turns out to be more con-
venient to work with an isomorphic copy W of this J-module which is disjoint from J. The
basis elements of W will be denoted by %3, h4 and e;. (The isomorphism maps upper case
symbols to the equivalent lower case symbols.) We will use the notation a[s] and a[3], a[4],
for the coordinates of @ € W in terms of this basis.

To construct the geometry F of type F4 we have introduced in [1, 3] the notion of isotropic
elements of W and of J (the latter are called totally isotropic in [1]). Points of F are 1-spaces
K e that correspond to isotropic elements e of W. Likewise, hyperlines of F are 1-spaces
K E that correspond to isotropic elements E of J. A point Ke is incident with a hyperline
KE if and only if e € WE, i.e., when e is an image of the action of the Lie algebra element
E on some element of the module W.

In characteristic 2 we may define a duality operation Q(-) which maps every isotropic
element e of W onto an isotropic element Q(e) of J. This duality extends to a duality of the
geometry F in the following sense: if Ke, K f are points of F such that Ke is incident with
K Q(f), then K Q(e) is incident with the point K f™° where -f°P denotes the action of the
Frobenius map on W which squares every coordinate of f.

To establish an explicit formula for Q (¢) we make use of the fact that the set of short roots
and the set of long roots are root systems in their own right, both of type D4. There is a linear
map r > r' which provides an isomorphism between them. This map preserves the angles
between roots, but not their length. It satisfies 7 = 2r. The following table lists the images
of all short roots, for easy reference.

r FT r FT ﬁ
1000 1001 ++++ 0101 ----0101
1000 1001 +++4- 1100 -—-+ 1100
0100 0110 ++-+ 0011 -—+- 0011
0100 0110 ++--1010 -—++ 10710 (1)
0010 0110 +-++ 0011 -+-+ 1010
0010 0110 +-+-1010 -+-- 0011
0001 1001 +--+ 0101 —++- 0101
0001 1001 +---1100 —+++ 1100

Now, let e be an isotropic element of W. Then the coordinates of Q = Q(e) € J are given
by

Olt'] = e[t?, whent' € ®,, Qlr] = D elule[v], whent € ®g,
{u,v}Cfbs
u+v:ﬁ

Ol1] = e[41%, 03] = Z e[ule[—ul,
ueds )
(1100,u)=—1

0I2] = e3P, o= > elule[-ul.
uedbyg

(1001,u)=—1

(The value for Q[4] corrects the one given in [1], cf. Appendix B.)
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78 K. Coolsaet

To ensure the existence of a Ree—Tits octagon, we shall henceforth assume that the field
K has a Tits endomorphism. i.e., an endomorphism o satisfying (k%)° = k2 for all k € K.
The corresponding Ree-Tits octagon is denoted by O(K, o).

To construct the embedding O(K) of O(K, o) into a 25-dimensional projective space,
we proceed as follows: points of the Ree-Tits octagon are those points Ke of F such that
Ke is incident with the hyperline K 0(e)°/2. (Note that o /2 = ¢~1.) This definition only
makes sense when Q(e)”/ 2 is known to exist, for instance when K is a perfect field (i.e.,
when K2 = K% = K). We shall postpone the discussion of the case where K is not perfect
to Sect. 4.

3 The 51-dimensional embedding in terms of Van Maldeghem coordinates

We are now in a position to define the embedding O'(K) of O(K, o) which we shall use
throughout this paper (we leave out the reference to the field K if it is clear from context).

Theorem 1 Let K denote a perfect field of characteristic 2 with Tits automorphism o. Let
O denote the 25-dimensional embedding of O(K, o) as described above. Define O to be
the set of 1-spaces of the form K Q(e)°/? where K e is a point of O. Then O’ provides a full
embedding of O(K, o) into a projective space of dimension 51, mapping points of O(K, o)
onto hyperlines of the metasymplectic space F.

Proof Note that Q(e)°/? is isotropic when e is isotropic, and hence K Q(e)°/? is a hyperline
of F. Q(e)°/? belongs to the 52-dimensional vector space J and hence K Q(e)°/? belongs
to the 51-dimensional projective space associated with it.

It only remains to be proved that lines of O(K, o) are mapped onto full lines of this projec-
tive space. This is an immediate consequence of [2, Proposition 6.2] or [3, Proposition 4.12],
which state that Q(ke + If) = Q(ke) + Q(f) = k*>Q(e) + le(f) whenever Ke, K f
are collinear points of O. It follows that Q(ke + [f)®/? = k° Q(e)°/? 4+ 1° Q(f)°/? and
hence the image of every point on the line joining Ke and K f lies on the line joining their
images. Because the field is perfect, we have K° = K and therefore also every point on the
line joining the images K Q(e)?/? and K Q(f)°/? is the image of some point on the original
line. d

The points of O(K, o) can also be described by means of a coordinatization by Van
Maldeghem [5]. This coordinatization assigns the coordinate (co) to a fixed reference point of
O(K,o) and a unique coordinate of the form (a,l,a’,l’,...), with 1, 3, 5 or 7
entries, or (k,b, k', b, ...), with 2, 4, or 6 entries, to every other point. The parameters
a,a’,...,b,b ... range over the field K. The parameters k, k', ..., [, I’,... denote pairs
k = (ko, k1), k" = (kj, k}), ...of field elements. It is customary (cf. [5, Sections 3.6.1-3.6.2])

to treat these pairs as elements of a group K, éZ) with composition & (non-Abelian in general),
endowed with a trace and a norm operation with the following definitions:

kol < (ko 4 1o, k1 + 11 + kg lo)

T(k) € Ktk
N (k) © K2 4 koky + & = koT (k) + k = koky + T (k)°.

We shall call the number of coordinates of a particular point its arity (the reference point
has arity O by definition). The arity of a point is related to the distance of that point to the ref-
erence point and to a reference line (with Van Maldeghem coordinates [oo]) which contains
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Ree-Tits generalized octagon 79

the reference point and all points with coordinates of arity 1. Points with odd arity i lie at dis-
tance i from the reference line and at distance i 4 1 from the reference point. Points with even
arity i lie at distance i from the reference point and at distance i 4+ 1 from the reference line.

In [2] Van Maldeghem coordinates are used to establish an explicit link between points
of O(K, o) and the corresponding points in the embedding O. A point in O with Van
Maldeghem coordinates (co) ((a,l,...), (k,b,...), respectively) is denoted by Kp,
(Kp(a,l,...), Kpk,b...), respectively) and explicit formulas are given for the coordi-
nates in W of the elements p(- - -) in terms of the parameters a, b, k, [, . . .. In this paper we
will do the same for the embedding O’ of Theorem 1.

For ease of notation we denote elements of K x K((,z) x K x--- and K§2) x K x Kéz) X+
by symbols of the form X. Van Maldeghem coordinates of a point are abbreviated to (X) and
the corresponding element of W is represented as p(X). We also allow X to denote the symbol
00 in which case p(X) is understood to represent p.

Write P(X) def Q(p(¥))?/2. 1t is our intention to express each P (X) as a linear combi-
nation of basis elements of J. The results are listed in Appendix A. They were obtained by
computer, but can be verified by hand using techniques similar to those of [2].

There are (at least) two different ways to obtain these results. The most straightforward
method consists of applying (2) to the results of [2] and then apply o /2. From the left column
of (2) we see that 26 of the coordinates of P(X) are essentially the same as those of the
p(X), More exactly, if r € ®g, then the coordinate of P(X) at position t* can be found by
applying o to the coordinate at position ¢ of p(x) (with the same parameters). Coordinates
at positions 1 and 2 of P(X) can be obtained in the same way from coordinates at positions 4
and 3 of p(x). In other words, the 51-dimensional embedding O’ (K) can be projected onto
the 25-dimensional embedding O(K?) (which for perfect fields K is the same as O(K)).

A second method consists of mimicking the techniques of [2]. This method uses cer-
tain elements y(a), y(k), w and S of the automorphism group 2F4(K) of O(K, o) (with
aecK, ke Kéz)) to derive points of a given arity from those of a smaller arity. Applying
[2, Lemma 1] and [2, Lemma 2] to our case, yields

P(a,l,a',l',a",l",a") = P,1,a',l',a",1",d") - y(a)
Pk,b, k', b, k", by = PO,b, k', b, k", b") - y(k)
P(a,l,d',l',a"y = P(0,1,d',I',a") - y(a)
Pk,b, k', by = P,b, k', b) - yk)
P(a,l,a’) = P(0,1,d’) - y(a)

P(k,b) = P(0,D) - y(k)

P(a) = P(0) - y(a)

and

P©,1,a",l',a",1",a"y = P(,d',l',d",l",a") - Sw
P@O,b, k', b k", by =P, K, b, k", b")-S
P@,1,d,l',a"y=Pd,d,l',d")  Sw
PO,b, k' by =Pb, K, b)-S
P,l,d")y = P(,d)- Sw
P0,b) =PD)-S
PO)=p- - Sw
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80 K. Coolsaet

Table 1 Images of basis elements of J through y(a),a € K

Eiiiy E————+aEiOOO+aJE++——+a1+UE0100
E E___,+adE |

E s E__,_+adE

E++—— +aEOlOO E__+++aUE++++

E___ E,

E_, . E, 4 +aEOOZI.O

E_ 4 E, _,+aEy0

E E,___ +aH4+a2E_+++

Ejoo0 tafivir  Efgoo +4%Egigo

Ep100 Egioo TaE__,, +a"Eqgoq+a'TOE,
Ego10 Ego1o taE_,_,

Egoo1 Egpo1 taE_, -

Hy H3 +aE__ .

E1100 E11qg + @ Eqqg0 +a” Hi +a” Hs

E1100 Ejfoo +aE, 4, +a*Eqgyg

E1010 Efg1g +a%Epi1g

Efo10+t4°Egi1g  Ero7o + a4y T@Eqqgy

E1001 Eqgo1 +a7Eg101

E1o01 Ta°Eg191  E1001 4B, Ta*Eg1qg

Eg110 Egio+aE___, +a"Ejgq+a'PE 4 a’Ejgg) +a®TTEg o
Eg110 Eg710 T47Eq010

Eg101 Egio1 TaE__,_ +a"Ejgo7 +a'YE,  +a*Eqg 0 +a®TOEq
Eg101 Eg791 a7 Eq001

Ego11 Ego11 +aE_,__ +a*E7 g

Ego11 Ego11

H, +aE et Hy +a E1100

fora,a’,a”,a" e K,1,I',l" e ng) fora,a’,a’,a” e K,1,I',]" e K((72).
The group elements y(a) and y(k) are linear transformations that act on J as listed in
Tables 1 and 2. In both tables the image of E, is the entry that has E, as its leading term.
The linear transformation w permutes coordinates according to the following scheme
(E, -w = E,» when r — r’ is in the table below)

0001 - +--+— 0100 - ---- — 0001 — -++- — 0100 — ++++ — 0001
tott > ———t > d——— —> ——F— —> —F—— —> +++— —> —F++ —> ++—+ —> +—++
1000 - -—-++— 0010 - +-+- — 1000 — ++-- — 0010 — —-+-+ — 1000

1001 - 0101 — 0110 — 0101 — 1001 — 0101 — 0110 — 0101 — 1001
0011 - 1100 — 1100 — 0011 - 0011 — 1100 — 1100 — 0011 — 0011
1001 - 1010 - 0110 — 1010 — 1001 — 1010 — 0110 — 1010 — 1001
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Ree-Tits generalized octagon 81

Table 2 Images of basis elements of J through y(k), k € K, ((,2)

E e ThoE _ FhE _  +NBE, __, E____
EpoothoE,  _+hE _ _+NKOE, ___ E___,
By s TRE _ +TRE, __, E__,_+hkoE____
By FKE, _ _ +TKRE, ___ E__, i ThoE___,
E_, _+KE__ _+T0OE____ E,_,, +kE,__,
E Ak E__  +TRE___, E__ thkoE,___
E_,, +kkE_,__+kE__,_+NW®OE____ E, _,
E_jypThoE_ _ +hE_ _ ,+NKOE___, E,___
E1000 E1g00
Eg100 T k5 Ego1o + TRH + AT Eqg1g

+NKTEg1g Eo1oo
Eqg1o TkoH3 +k§Eqo1o + TH) Eg1g Ego1o T4 Eo1oo
Epoo1 Epoo1
Hy +k0EOOiO +k1EOiOO H3
Eq100 tk5E1010 HTHRE 900 AT E1g10

+NKTE 79 Ei1g0
Ef190 tk§Eqg10 +TMETgo +ATEqpTg

+N(KTE119 E11g0
Ejg10 +koE 900 +KoE 070 T TH7E 100 Efo10 45 ET100
E1g10 Th0E1g00 k5 ETg1o + T Ef1gg Eqo10 k3 E1100
E1001 Eigo1
Eig01 Eq001
Eg110 +koEqg10 +ki1Egg1o +k5Eg110 Ep11o

+kPEy110 +KINKE G100 +koNKEqyTo

+N (k) Ey11 + T Hy + N(k) Hy
Eg170 +k§H2 k7 Egqg Eg11g +koEqg1g0 thEq110

+ T Eyo1o +k§TKVEg o + TR Egy1g

Egi01 Tk5Ego1r +TREggq +AT Eggrq

+N(K)TEg1gq Epio1
Eg191 tk§Ego11 +TMEgg1 A Egpit

+NKTEg1o1 Eoior
Ego11 +koEqgggr +k5Eqo1r + TR Eggy Ego11 A5 EgioT
Ego11 +koEqgo1 +k5Eqo11 + TW7 Egior Ego11 A5 Egior
Hi+kgEg119+ TR EG1o0 T4 Eg11g Hy +koEgg1g +k1Eg1gg

while S permutes E, with E,» where r’ is obtained from r by changing the sign of the

middle two coordinates. (For example, E S=E____,E -S =E

++++ +> 71100 1100’
E -S=FE

1001 1001")
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82 K. Coolsaet

The action of S and w on the torus G is as follows :

Hy-w=H +Hs;, H-w=H + H+ Hs,

H3 - w = H3 + Hy, Hy - w = Hy,
H-S§=H, Hy-S§S=H,,
H;-S = Hj, Hy-S = Hy.

The explicit formulas for the actions of each of these group elements can be derived from the
theory established in [1] or [3]. Alternatively they may be obtained from the corresponding
actions on W which are listed in [2], using the fact that Q (e®) = Q(e)® whenever g € 2F4(K)
(1,3].

4 The case of a non-perfect field K

As in the case of the 25-dimensional embedding, the fact that the formulas in Appendix A
make use of o but never of o ~! enables us to define the embedding O’ also in the non-perfect
case.

Theorem 2 Let K be a field of characteristic 2, not necessarily perfect. Let o be a Tits
endomorphism of K. Then the map which maps a point with Van Maldeghem coordinates (X)
onto the point K P(X), where P (- --) is as given in the tables of Appendix A, is an embedding
of O(K, o) into the projective space associated with J. This is a full embedding if and only
if K is perfect.

Proof (The proof is almost identical to that of [2, Theorem 5] so we shall only give a sketch
here.)

The lines of O(K, o) can be easily expressed in terms of Van Maldeghem coordinates.
For example, the line with Van Maldeghem coordinates [a, [, a’,l’,a”, "], witha,d’, a” €
K,1LI'l" K((,Z) contains the points with coordinates (a,l,a’,l’,a”) and (a,l,d’,l’, d”,
[”,a"), for all @’ € K. We may use the tables in Appendix A to verify that

P(a,l,d,l',a",1",a") = P(a,l,d,l',a",l",0) +a"° - P(a,l,d',lI',a" 3)

and hence this line is embedded as (part of) a line of the projective space associated with J.
Similar arguments hold for lines [- - - ] of arity smaller than 6.

The only remaining lines are the lines with Van Maldeghem coordinates [k, b, ...,
k"] of arity 7. These contain the point with coordinates (k, b, ..., ") and the points with
coordinates of the form P(a, ®¢(a,k,b,.... k"), ..., ®1(a,k,b,..., k")) witha € K.
(The functions ®; define the so-called octagonal octonary ring of the octagon. They can be
expressed as explicit formulas in their arguments, involving ¢ but not o ~1.)

In this case it is sufficient to prove that

P(a, ®g(a, k, b, ..., k"), ..., ®1(a, k, b, ..., k"))

= P(0, ®6(0,k, b, ..., k"), ..., ®200,k,b,....k"))+a® - P(k,b, k', b k", b"), (4)
foralla,b,....b" € K.k,....k" € K&.

When K is perfect (4) can be obtained by applying Q(-) to the corresponding identity

that holds in W (with P replaced by p and the factor a® by a). Therefore, when (4) is evalu-
ated symbolically, the left hand side and the right hand side will yield identical expressions.
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Ree-Tits generalized octagon 83

(This could also be verified by computer.) Because these expressions do not involve RN C))
remains valid when K is not a perfect field.

Finally, note that the scalar factors of the rightmost terms in both (3) and (4) range over
K and not K . It follows that lines of O(K, o) will be embedded as full projective lines only
if K7 =K. O

5 Subdimensions

Define the (projective) subdimension d;, fori =0, ..., 7, to be the dimension of the projec-
tive space generated by the points of O’ at distance i from a given point (for i even) or a line
(for i odd). Because the Ree group acts transitively on the points and lines of O and because
the elements of the Ree group are induced by linear transformations of J, this definition is
independent of the chosen point or line. As before, we choose the point K P and the line con-
necting K P and K P(0) (i.e., KE 0101 + KE 100 l) as reference point and reference line.

The points at distance i of the reference point or line are exactly those with arity i ori — 1.
Denote by J; the subspace of J generated by the elements P (¥) having arity i ori — 1. Then
d;i =dimJ; — 1. Ttis easily seen that Jo < J; < --- < J7 = Js.

Lemma 3 Let K be a field of characteristic 2 with Tits automorphism o. If |K| > 2 then
there exist a, b, c € K such that the determinant

111 1

aa® a2 al+<7

b b° b2 bl+a

c c° C2 clto

(6))

is different from 0.

Proof Because |K| > 2 we may choosea # 0, 1. Consider A = a+a®.If A = A, thena+
a® = a®+a*andhencea = a?,implyinga = Oor 1. Hence A # A° . Inparticular, A # 0, 1.
We shall prove that we can take b = a® and ¢ = a + 1. Then (5) reduces to

1 1 1

1 1 1
a a’ a? alte o o )
o 2 20 2420 =(a+a”) a a a
a a a a a® 2 020

a+1 a®+1 a*4+1 a*"4+a+4+a°+1

(We have added the first two rows to the last one.) Now, adding the second column to the
third and the first to the second, we find that this is equal to

1 0 0
Ala A A% | = A(A® 4+ A%)
a’ A° A2

This is equal to zero if and only if A = 0 or A% = A3, Applying o to the latter equality we

obtain A* = A3° and hence A = A*/A3 = A3°/A%° = A°, contradicting our assumption.
g
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84 K. Coolsaet

Theorem 4 The subdimensions d, . . ., d7 for the embedding O’ of the Ree—Tits generalized
octagon over a field K are as listed in the following table, where the values depend only on
whether K is the finite field of order 2, or not.

do dy dy d3 dy ds dg d7
K # GF(2) 0 1 5 13 29 43 50 51
K = GF(Q2) 0 1 4 10 23 37 49 51

Proof By counting the number of canonical basis vectors of J that occur in the expressions for
P (x) for X of various arity (i.e., by counting the number of rows in each of the tables of Appen-
dix 6) we easily arrive at upper bounds for the various subdimensions. These are exactly the
numbers given in the first line of the table of subdimensions. Before we prove that these bounds
can actually be attained when |K| > 2, we shall first discuss the special case K = GF(2).

In this case o is the identity (and conversely, this is the only case in which the identity is
a Tits endomorphism) and we find

a=a’, Tk)=ko+k, koNk)=ko, kNk) =k, (6)

foralla € K,k € K.
It is clear that Jo = KElOOl and J; = KElOO To establish a basis
for J,, observe that the coefficients of P (k, b) for EOOil’ 0011 00071 are k7, k§

and T (k), which sum up to zero when K = GF(2), by (6), reducing the dimension of the
corresponding subspace by 1. Hence the upper bound for d, can now be reduced to 4.

It is not so difficult to see that the following five elements may serve as a basis for J; (still
assuming that K = GF(2)) :

1+KE
E

0101"
and E

E E E E E

1001’ ~0101° ~o0101° OOZ_Ll+EOOOl’ 0011+E0001'

Hence d, = 4.
(We will not give explicit derivations for the bases of the various J;. Although they are
most easily computed by computer, it is still possible to obtain the results by hand.)

. . . ,
Likewise, the coefficients of P(a,l, a’) for ElOiO’ EiOOl’ E———+ and E++—+ are

a® = a*> = a = a'*7, reducing the upper bound for d3 by 3. We may compute the following
basis for J3:

2

E1001 Eo1o1° o101’ ool Eoo11’ Fooor Eoiior Evo-v

E1100° Eiovsr EioTo T B0 T E 4 HE
Similarly, for P(k, b, k', b") we obtain
0170’ Eorop and £

0110’ Eoo10ad Eg1pg

The coefficient of H, is T (k)?, i.e., the sum of the two previous cases.
1 _ _ : o o0 o7,2
The coefficients of ElOlO’ ElOlO’ ElOOl and ElOOO’ ie., b7 + kgky?, b7kg

+ k{ ko, b? and bk + T (k)k(, sum up to zero. (Note that this is also true for the
corresponding coefficients of P(a, [, a’).)

o The coefficients of £ are ké = ko = koN (k).

are k7 = ki = ki N (k).

0010
e The coefficients of £
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This reduces the upper bound for ds by 6. A corresponding basis of 24 elements is the
following :

E1001° Eoto1’ Eo1o1' Fooi1r Foor1r Fooorr Foilor Fe--s
E OO’E+—++’ EOllO’ E++++’ EllOO’ E++—+’ E_ —++’ E———+’
E o E M

E1010 T E1001> F1010t F1000° £1010 T E1000°

E

0110 T £oT00 T Ego10 + A2 Eg170 + Egr00 T Epoto T H2-

For P(a,l,a’,!’,a"”) we have
. 2,
° ThecoefﬁcwntsofElooi,EiOlO,E__+_ andE__ . _area’ =a"=a=a

e The coefficients of E7010 and E___ are 1(2) = lp.

o The coefficientsof £ __ and E7 ), are a®ly = alyp.

o The coefficients of F and E are a"l(z) = a'*9],. (Note that this is also true

0110 0100
for the corresponding coefficients of P(k, b, k', b').)

This reduces the upper bound for ds by 6. A corresponding basis of 38 elements is given by

E1001 Eo101° Eo101° ool Eoo11’ Eooor Eoitor Ev--v
EliOO’E+ ++ EOllO’ L EllOO’ E v v B, E___,
E_vow Boyiw B Eg1o7 Eo1000 11000 E1000° 10107
E1010° E1001’ H1v Has Eqor00 B s Eg1p00 H2o
E, o Egoigr Evi - T Eigo0 Eioi0o T E-——-» Eg110 T Eor00
Eigo1 tE1pro T E__s T E,,,

For P(k,b,k’,b’, k", b") we find that the coefficients of EOOli’ EOO:_LI and EOOOi’

i.e., ki, k7 and T (k) again sum up to zero, decreasing the upper bound dg by 1. A basis of

50 elements is given by all canonical basis elements of J, except E1007' Eoo11° Ego11

and EOOOi’ extended with the elements EOOli + EOOOi’ and EOOii + EOOOi‘
Finally, as both EIOOi and E 0001 are easily shown to belong to J7, we find that

dim J7 = 52 and hence J7 = Jg = J.

When K # GF(2) we shall extend the bases obtained above with a sufficient number
of new elements to obtain the bounds listed. (There is a slight abuse of notation here: the
base elements above live in a vector space over GF(2) instead of over K, hence we first
need to ‘lift” them to the correct vector space. This is can be done in the obvious way, as all
coefficients are either O or 1.)

Consider the case of J,. For k € Kéz) we find

Pk,0)=FE +T(k)E

o o o
0101 TR Egp11 Ko Egppqp T NKEpggq 0001
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and hence, after reduction by the basis elements of J, we have obtained earlier, (k§ + k{ +
T(k))EO 001 € J2. Choosing kg = O and k; such thatky+k{ # 0, we find that EOOOl e Jo,

and this element may serve as the extra basis element we require to make d, = 5.
For J3 we need three extra elements. These arise from the equality
2\ L o _ 2 2+0 1+o
Pa,09) =Ey779+a°E q79Ta Eggy ta@ "Ey gy taE___, +a E

+ ++—+"

This proves thataUElOiO +a2E1001 —i—aE___+—|—¢11“"’E++_+ € Jzforalla € K. The

case a = 1 yields an element which we had obtained before, but Lemma 3 proves that we
may still find a further three linearly independent elements of this form, proving thatd; = 13.
For J4 we first use P (a, 0%) of the previous case to ‘split’ E, oio T E7 001 into separate

and E~

basis vectors E 1001"

1010 Second, we have

3\ 2 _ o 2 _ 2 __
Pk,0%) = EOllO +k0EOllO + T (k)° Hy +k1EOllO + N (k) EOllO
+k0EOlOO +k1EOOlO + N(k)H3 +k0N(k)EOOiO +klN(k)EOiOO (@)
which reduces to
2 o 2
kOEOliO + T (k)° Hy +k1EOilO +k0EOlOO +k1EOOlO +k0N(k)EOOiO

+KNKEyT o0 (8)

The special case kg = 0 yields elements of the form

o 2 _ I+o _
k{ H> +k1EOllO +k1EOOlO +k Eqi00

and hence, applying Lemma 3 in a similar way as before, we may split E 0110 T E 0100 T
E 0010 T H, into four separate terms, giving three new basis elements.

Similarly, setting k1 = 0 in (8) yields elements of the form

2 _ 240 3+o _
koEq170 ko " Ha+koEq 0 +k T Egp1g-

By setting ko = 1, ko = a and ko = a + 1 with a # 0, 1 in this result, we obtain three
linearly independent elements. This provides yet another two new basis elements, bringing

the total up to 30, which proves that ds = 29.
We leave it to the reader to prove the cases ds = 43 and dg = 60 in a similar way. d

6 The Suzuki suboctagon

The set of all points with Van Maldeghem coordinates (X) for which all K ((,2) -entries are zero
(e, k =k =k"=1=10 =1" =0), is a suboctagon of O(K, o). This is a so-called
half-thin generalized octagon, a degenerate case with only two lines through each point.
A half-thin octagon of this type can be constructed by taking as points the flags of any gener-
alized quadrangle, and as lines the points and lines of that quadrangle. We call this particular
suboctagon of O(K, o) a Suzuki suboctagon because the corresponding quadrangle is known
as a Suzuki quadrangle (a self polar Moufang quadrangle of indifferent type).

A Suzuki quadrangle can be described fairly easily in terms of the better known symplectic
quadrangle W (K), which is defined as follows:
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e The points of W(K) are the points of the 3-dimensionale projective space over K. We
shall represent a point x by its coordinates (xg, X1, X2, X3).

e The lines of W(K) are those lines of the 3-dimensional projective space whose Pliicker
coordinates satisfy po1 = po3.

Recall that the Pliicker coordinates of a line xx’ of the projective 3-space are the six values

Xi Xj
/o

pij = —Pji =
1
po3p12 = 0 and the fact that a point and a line are incident can be expressed as the set of
four equations x; pjx + x; pri + xkpij =0, foralli, j, ksuchthat0 <i < j <k < 3.
The Suzuki quadrangle W (K, o) is the following subgeometry of W (K) :

,with 0 < i < j < 3. They satisfy the identity poi p23 + po2p31 +

e The points of W(K, o) are those points x of W(K) for which xgx; + xpx3 € K. We
shall write x4 for the unique element of K that satisfies x{ = xox| + x2x3.

e The lines of W(K, o) are those lines of W(K) whose Pliicker coordinates satisfy
P02, P13, P03, P12 € K¢. Each line of W(K, o) can therefore be characterized by
a unique quadruple (yo, y1, y2, y3) such that y§ = pi2, ¥ = po3,y; = po2 and
y3 = pi3-

(Hence W(K, o) = W(K) when K is a perfect field.)

Taking y4 = po1 = p23 we see that there is also a unique y; € K such that yJ =
Yoy1 + y2¥3. (Hence, the quadruples (xo, ..., x3) and (yo, ..., y3) satisfy the same condi-
tions. In fact, interchanging x; and y; defines a polarity on W (K, 0).)

The equations for point-line incidence can now be rewritten as

x0yg + X1y5 + X2y4 =0,
xoy§ + x1y{ + x3y4 =0, o
X0Y4 + x2y7 + x3y9 =0,

xX1y4 + x2y5 + x3y§ = 0.

In [2] we have shown that every point K e of the Suzuki suboctagon in the embedding O
can be represented in the following way:

e=Xoyoe_,_, T Xoyie, _, F X0y2¢pq0q1 T X0V3€q07g
TXYoe o T xvie, T Xi2egg1g T X1Y3¢0007

10
+X2y0egq 00 T N2V1€ 000 T R2C by T N2YIE o
+ x3ye1qg90 T X3V1€g10g T ¥3Y26__,, FX3y3€___
withxo, ..., x3, Yo, ..., y3 € K.Inother words, e can be expressed as a tensor product of two
vectors x = (xg, ..., x3)and y = (yo, ..., ¥3) from a 4-dimensional vector space over K.
Moreover, not surprisingly, each such pair (xo, ..., x3) and (yo, ..., y3) can be shown to

satisfy xox1 +x2x3, yoy1 + y2y3 € K¢ and the set of equations (9), with the same definitions
for x4 and y4. In other words, x and y represent an incident point-line pair of W (K, o).

@ Springer



88 K. Coolsaet

Now, applying (2) to (10), we obtain

2 _
Q@7 = x{¥§E1g19 +3G37 Eg1o1 +36Y5 B o1 +3695 Eqro T¥3ME, .
+ X730 Egro1 T ETo10 T2 Ega1g TX135 Exge1 T ME_,

+ 335 Eg110 T2 Efgp1 T42Y2 Egrgq tX3Y5Eqgqg T3 aE L,
t 30 Eqgo1 T30 Egi1o P53 Eqg1g T35 Egior H50E, ___

+ x4y E +xayE___, +x)5E +x4ySE _ +x4y4Hy.

+4+— -+ ++—+ —+-

an

(Although the left hand side contains o /2, the fact that the right hand side does not, proves
that this formula remains well-defined also when K is not a perfect field.)

Hence Q(e)°/? is a tensor product of the vectors x§, ..., x5, x4) and (5, ..., Y9, ya).
(This tensor product can also be expressed as the restriction of operator * of [1,3] to two
5-dimensional subspaces of W.)

Theorem 5 The (projective) dimension of the subspace of O’ spanned by the points of a
Suzuki suboctagon is 24 when | K| > 2 and 15 when K = GF(2).

Proof Write S for the subspace of J generated by all E € J such that K E belongs to the
Suzuki suboctagon. We must prove that dimS = 16 when K = GF(2) and dimS = 25
otherwise. It follows immediately from (11) that dim S < 25.

We first consider the case K = GF(2), where o is the identity. In that case (9) shows that the
values of x; y4 can always be expressed as sums of terms x y; with j, k # 4. Now, multiply-
ing the first row of (10) by x1, the lastrow by x» and adding, yields xJ y§ +x12 v +x§ y3 =0,
and hence x4y9 = x{ y2 + x5 y3, proving that also x4yo can be expressed as sums of terms

xjyx with j, k # 4. Similar identities can be found for x4y1, ..., x4y3. Finally, we claim
that xoys + - - - + x4y4 = 0 when K = GF(2). This is most easily verified by checking that
the sum of the coefficientsof £__ . E____,E__ ., E____ and Hy in the tables of

Appendix A is indeed zero wheneverk = k' = k" =1=1'=1"=0.

These observations prove that when K = GF(2) the nine coefficients in (11) that involve
X4 or y4 are linear combinations of the others. It follows that dim S can be at most 16.

To prove equality it is sufficient to establish a basis of S of size 16. We shall make use of
the fact that the Suzuki suboctagon is left invariant by the automorphism w.

The first eight basis vectors are taken as subsequent images P, P - w, ... P - w’,ie.,

Eip01 E 0110° £0101° 7001 Eo101° £o110° Eo101-

Now, consider

2 4 2 2\ _
P(1,0,1,0%) + P(1,0Y) + P(0*,1,0°) = Eqy o1 + Eq1071 T E1g10 T E—yin

+E++—+ + Ha.

Reducing this element with respect to the first eight basis elements, provides us with another
eight:
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s T HLEqgg Y E A E, L+ Hs

+

tolotBuoss tE__ HHLEg g+ E __ HE,_+H

_ + Hy,

+-—= -—+ +-

E
E

Eyg19+E +E__, +HiLEjgo1+E__,_ +E_
E +++H4’

iOlO+E— +E _+H4,E0110+E+++_+E_

+-- +4++ +

This proves that dim S = 16 when K = GF(2).
We may generalize this to the case K # GF(2) as follows. Let a € K. We have

2 4 2 2N 2 o o
P(a,0,1,0% + P(a,0") + P(0%,1,0%) = a’Ey o1 + Eg701 4" Eq 910

+a2E_++++aE++_++aH4.

Reducing this as before, we obtain for each a € K the following element of S

def

el o 2
V(a) = a E1010 +a’E_ - +a(E + Hy),

+ ++—+
and by Lemma 3 we may find a,b,c € K such that V(a), V(b), and V(c) are linearly

independent. It follows that E 1010° E_yipr and E___ + Hj belong to S. Repeatedly

applying w to these elements, we see that each canonical basis element of J that occurs in
(11) also belongs to S. Hence dim S = 25. O

A computer result of [5, Section 8.7.1] states that the universal embedding of 2W (2)) has
dimension 15. This clarifies why in the theorem above the dimension for the case K = GF(2)
goes down to this value.

Finally, comparing (10) with the ‘top left’ part of (11), we observe that the same projec-
tion that maps the embedding O'(K) onto O(K?) also maps the embedding of the Suzuki
suboctagon of Theorem 5 onto the 15-dimensional embedding of [2] (with base field K
instead of K).

Acknowledgements I would like to thank the anonymous referees for many useful comments and
suggestions.

Appendix A: Tables

The formulas below express the elements P(---) of J in terms of the canonical basis ele-
ments of J. They are arranged in eight separate tables, corresponding to arities 0 upto 7. For
typographical reasons the formulas are given as tables of coordinates. The expressions in the
right hand column are the coordinates for the canonical basis vectors of J indicated in the left
hand column. We refer to the basis vectors E, and Hj ... Hq by the symbols r and 1...4.
For example, the table for arity 2 should be interpreted as

_ o _ o o B o
P(k,b) =Ey g1 tKIEgg1q thoEggpq + NK) Egggq +67E 99

+T(k)EOOOl.
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For arity 2 and above, each table consists of two parts. The first part contains the coordi-
nates that correspond to the long roots of @, the second part corresponds to the short roots.
As was explained in Sect. 3 the first part of each table provides a 25-dimensional embedding
of O(K, o) which is essentially the same as the embedding O of [2], up to an application of
o and a renaming of the basis vectors.

Arity 0. Value of P.

1001 1

Arity 1. Values of P(a) witha € K.

0101 1
1001 a’®

Arity 2. Values of P (k, b) withb € K, k € K.

0101 1
0011 34
0011 kS
0101 N (k)°
1001 b°
0001 T (k)

Arity 3. Values of P(a,l,a’) witha,a' € K, € K.

0110 1
1010 a’®
1100 13
1001 a?
0101 a*te
0011 19
0011 a’lg
0101 a’®
1001 ND)° +a®a’®
———+ a
ER—— al§
+4+—+ alto
+-—+ T ()
0001 aT ()

@ Springer



Ree-Tits generalized octagon 91

Arity 4. Values of P(k, b, k', b') with b, b’ € K, k., k' € K&.

0110 1

0110 Kt

2 T (k)°

0110 k?

1010 b7 + ki ky®

1100 kg

0110 N (k)?

1010 bokS + KTk,

1100 bT (k)7 + N k) ky”
1001 b?

0101 b’

0011 b2k + kgk(” +b'7k]
0011 k1” +b'7k§

0101 b2t + b2kGk) + T (k)° K, + b'° N(k)°
1001 N (k)7 +b°b'?

0100 ko

0010 ki

3 N (k)

0010 koN (k)

-+-+ bko

—++ b

0100 k1N (k)

——t bk,

——— bN (k)

1000 bko + T (k)k)®

S+ T (k')

ot bk§ k,” + b1+ I T (k)
S bk(” +koT (k)

. bT (k)k)" + b ko + N(k)T (k')
0001 kok{® 4 b'°T (k) + bT (k')

Arity 5. Values of P(a,l,d’,l',a") witha,d',a" € K,1,I' € K.

0101 1

1010 I3

1 a’ly” + T()°
1100 I

1001 a’
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1010 a?
0110 a*te
0110 a’l?
2 T()°
0110 a'” +1I51)°
1010 a’a’® +a°I§1,° + 13
1100 a®T()° +a*1)°
0110 a’®
1010 a*+a®a’’
1100 1° +a"l§
1001 a1+ 1517 + a*a"®
0101 N(l)2+a2a/2+a”a/"l§+a”l‘l’l()" +a?toq’”
0011 a3 a0l
0011 d°T1)° + Nl + a*l}” +a*a" I
0101 NN +a'°a’°
1001 a0+ 51 + T +a’ N(I')’ +[N()® +a®a’"la"®
-——+- a
- alte
—— Io
+-+- A
4 aa'+ N()
+-—— a
1000 aly
- a’ly
0100 a'*oly
0010 aly
3 a”l(’)” + loly
0010 a'ly
-4 aa'ly + IoN (1)
—+++ a%a’ +aN(O)
0100 ")
S a’ly+ T +aT(')
———t a'ly” +aa" + 1T (1)
1000 a'ly +a°T (1)
+H++ ad'ly +a°a’’ly+a’ T + LN +a' T 1)
PR d'lp’1)° +al)® +a''"" +aad"ly" + L T(l')
-+ a’a'l)® +a'N(l) +aa"? +a'*a"" +a°lyT (')
-+ Iol}? +a"°T() +a'Tl")
0001 alply? +a' T’ + a' Uy + aa"° T() + T(")[aa’ + N ()]
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Arity 6. Values of P(k, b, k', b/, k", b") with b, b, b" € K, k, k', k" € K.

0101 1

0011 kg

0011 kS

1100 ky°

0101 N (k)®

1010 b% + K3k + kT k(©

1 bk + T (k')

1100 T (k)7 ky* + N (k) k® + bk

1001 b?

1010 ko> + kg k©

0110 b'°

0110 b + k(TG + b kG

2 Tk + bk + k§ky k() + b T (k)°

0I10 bok)? + bOkGk(T + kST (K'Y + bk + kZTk( k) + bk}

1010 b2+ kSk| + [b° + kGk)1b"°

1100 k{7 + "7k,

0110 B>t + bOKTKT 4+ kJT (K + b7k + b0 T (k) + T (k)?k,k}®
+ b’ N(k)2

101 BB + bk + k(2 bkG + kT k(O + [Tk + kS k(1"

1100 bOT (K +b* kg% + b7b'7kG + b7kG ko koo + kG hy* + b2 T (k)7
+ N(K) k| +[b° T (k)° + N(k)°ky°1b"°

Too1 b7k + k{Tky 4+ bD"°

0101 NK" +b°b"

0011 POT (k') + N(K')ky® + b2k} + b'*k3k" + k3ky2k|® + kI N (K")°
4 [bZk(/)a 4 kékga 4 b/ak(lr]b//(r

0011 b/Zk(/)/a + k(/)zk/l/a + ng(k//)o + [kia + b/akg]b//a

0101 Nk +b*D"? + b b7k + bk Ok + T (k) k() + T (k) k°k}|®
+0k§T (k) + kN (K k(® + b*kGKY® + N (k) N (K")°
+ [B210 + b2kG k) + T (k) k) + 'O N(k)°1b"°

1001 b/2+a + b/Zk(/)O'k(/)/O' + T(k/)ok/lla + bJN(k//)o + [N(k/)c + bab/a]b//a

0001 T (k)

-4t k;,

—+-- kokl, + b

-t bkg + kikj,

- b

N (k)k + bT (k)
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b
1000
+4+-=
0100
0010

0010

—+++

0100

——++

++—+

+-—+

0001

bkl + b'ki + kG K,

bb' + N (k')

b7 koky + b'N (k) 4+ T (k)k| + b'+e

bk|, + koky? + T (k)k[°

b'ko + k]

b"%ko + T (k")

bkl +b" ki + kT (k")

b'kokl + N (k') + b"° N (k) + T (k)T (k")

bb'ko + b'kGk() + kok{ki + bk} + T (k)k( k" + b'" T (k) 4+ b" ko N (k)
+ kST (K"

b'koky® + "7k + T (K )kg® 4 bb"7 ko + T (K")[b + kokg]

b’k + bb" + k)T (k")

bb'ky + b7 kok()> + bko® k| + kikjk| + bITOk) + ko T (k)k{% k()°
+b° T (k)k)® + b ko T (k) + B'T (k) k) + T(K)T (k') + b" kN (k)
+ N(k)° T (k")

bb'k) + b'7ko% kly + b'ki1k[" + ko° T (kK")k(” + k)N (k') + bb""k;

+ T (K")[bk§ + kik]

bb'kok(, + b0’ +b'° T (k)k), + T (k)T (k")k[}° + kokoN (k') + b’ N (k)k[°
+ bN (k') 4 bb"" N (k) + T (K")[DT (k) + N (k)k(]

b%ko + Uk} + T (k| + 1" [bko + T (k)k(®1+ b T (K")

ko7 +b" T (K') + b'T (k")

b'ko% k(% ki +b bk +bko k| +kikk{” +bb"2 b1 ko +b'N (k')
+ b7 [bko% k" + b + ki T ()] + T (k") b7 kjy + k§ ki + b'ka]
bk kg + kokok{7 + bk{% 4+ b + b7 [k +koT (k') + T (k") [k}
+ b'kol)

b7 b'kok(” + bb"*ko + b7 b7k + bb'k| + b'koN (k') + b'T (k)k()” k(j°
+ N(k)kok,® + bT (k)| + b T (K)k{® + b0 T (k) + k| N (k)

+ 0" [bT (k)k)® + b1k + N(K)T (k)]

+ T (k") + b7koky + T (k)k| + b'N (k)]

bk + b2 kok{[® + kok(*k® + b 1Tkl + b'T (K)k(® + T (k)N (kK")°
+ "7 [kok|® + b/ T (k) + bT (K')] + T (k")[N (k') + bb']

Arity 7. Values of P(a,l,d’,l',a",I",a") witha,a',d",a" € K,1,I',1" € K.

1001
0101
0011
0011
1100
0101
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1010 " + 101" + a7

1 a//Ul(()r + l(()fl(/)al(/)/d + a/ol(/)/a + (lali/a + [aol(/)a + T(l)a]a///a

1100 l;/a —}—a”/”l/a

100]‘_ l/ + l() l//o aa///U

1010 a'® _,’_aZ nmo

0110 N(Z)J + a21 + azlgl//a a’a® + a2+a no

01lo a? + 13102 + 1715 +a°a"" +a®l(°1§° +a°ad" I}

2 T(l/)(r _'_a//o‘l(o)' +lgl(/)dl(/)/n + a///(TT(l)(T

0110 a’? + 1517 +[a'® + 1517 1a""°

1010 a/gl/2 —I—a’alal”” +IGT(Z/)U _’_a//al(%(r _,’_l(%al(/)al(/)/zf +a%a "2 +aalal//a
+ [ 40 + aolal/(r 112]0//10

1100 T(l)"l(’)2+N(l)"l(’)/° +a 1§ +a* 1] +a° T (') +a®a"’ 1§ +a® IS 1,0 1°

[ U'T(l)o' +a251/a]a///a

O:T.:T.O N(l//)o' + a//o' "o

1010 a”"l(/)2 + 117157 +a’ N(1")° + [a?+a®a’?1a"®

1100 a//ZI//o— l/ 21//0— + lch(l//)a + [l/o + a//olg]a///a

1001 12 +a9a" +a"°1)°15° +a"13 + 151 +a®>N (")’ +[a'°13 + 191"
4 a2a//a]a///(r

0101 /2+o’ +a/alal//a +10T(l/)o +amlzl/2 +a//a T(l)2 + T(l)zl(/]"lg"
+a%a" 1)> + a®1}°1)° +a®a’®a"’ +a°a'’°1)°1}° +a°l;? + a®a"?i}
+a®lf1/° + a®**N(@")’ + [N + a’a’* + a®d1} + a®I51)°
+ a2+oa//o]a///a

0011 a//oT(l/)a + N(l/)alga +a/21/l/a +a//2181(/)/0 +l(%16211/0 +l¢17N(l//)o
+ [a/ZZ(/)U 4 lglia + a//alif]a///a

0011 a/oT(l/)U + a/Ztrlé/c +a/aallalg + a/algl(/)dl(/)/o + lgliZ +a//2T(l)d
N1 +a*a1]" + a®1)%1]° + a*IgN (")’
+ [a/aT(l)a + N(l)al(/)o _l_aZlga +a2a//alg]a///o'

0101 a"?to +a" )17 + TA)1)° +d* N(I")° + [N(')° +a'°a""1a"°

1001 N(l/)z +a/2“//2 +a/aa//cl(/32 +a/o-lio-l6/a- —l—a”zT(l)UlgU + T(l)o'l(/)Zl/l/a
+ a”olgT(l/)a +lgN(l/)UlgU + a/ZIglllla + aaa//2+a + aaa//2l(/)al(/)/a
+ aUT(l/)Uli/a + [N(l)(f + ao‘a/(T]N(l//)U
+[a/2+a +a/2[gl(/)a +T(l)alia +aGN(l/)g +a//aN(l)U +aaa/o—a//o]a///o

0001 A

—t4- aly + T (1)

—+-= aly® + loly +d

—_—— a’ +aad”°

et aloal(/)la +a%a //+al/2 +Cl/l() -‘rlll/ +a1+(r "mo

S a///o'lo + T(l//)

R a’ly +a" L + 15T
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aa"li? +a"lply+a'a” +a'? I} +T (1) +a"[aa’+ N+ T (1")[al]
+T1)]

a'lj" +a'a” + )T (")

a’ly+1; +aa"ly+aT (")

a'ly +loly> + TG +aa"ly +a° T (")
ad'lj+a®a"lo+aloly* +aT (DI +N D)l +al}+d' T (1) +a' a1y
+a'*tor(”)

aa"ly +a'®ly +a"ly + 1071} +aa” "1y + al§ T (1")

a"loly+1o% 17 1§ +a° 17 +a" o® +1gl | +a"" [a® 1) +lol ]+T ()T (")
a"lolf” +a"’ Iy + TS +a'a”ly + T (1"’ + lol)]

aa"loly’ +aa"° 1) +aT (N} +a'a"ly +a"lg*1y + Il + T (DI 15°
+d'l; +a" T (1) + " [adly + loN ()] + T (I"[aa’ + alply + 1]
mﬂh%+ad“%“+a%ﬂ%”+a%ﬂ+amm%+ﬂ”NU)+TUﬂi+a”M
+a"[a*d’ +aN)] + T1")aT 1) + a*l]

I +a"° Ty +a"T(")

algl{® + a"ly + d"li + T + a"[dlo + T’ + aT ("]
+T({"[a® 4 ad”]

aN(I") + d"l)° 17 + olyl]" + d'l]” + a1 + " [} + aad”®
+ 1T ()] + TANIl] +a"lo]

a®lplle +a'a"ly +a" 1071y + a" L1 + 1" T + [N
+a"[al +a" T()] + T + il +a®a"]
aa'a’lj+aa"" 1y° lj+aa" |, 1{° +alo® T (A +1o° T ()1 1§ +a°a"ly
+a%a”"l{+a° T (DI} +al(/)N(l/)+a1+”l(’)li"’ +ad'a’ly +a/"lol(/)2+a/lo”li
+ad " T +a" " T (1) +a" T I+ LIl +a ol +TOT 1)
+aWGMa7y+a“d“m+wﬂTUﬂ$V+hNU)+aHﬂTUX
+TAMIND® +a°a’® +ad'l§ +alily+a'*7a"]

alg® N(1")? +a"l0°1)°1§° + aa"?1}° + alp?l]® +a'°a"1]° +a'lo’l]°
+a' Ny + LIjl}® +a'a" + a"1 01"

+d"[a'lg?1)° +al}? + a7 +aa"" 1" + 1, T (1]

+ TNl + 151} +a"l]

a®a"l\’ 15 + a®lolpl{” + a'a"loly + a" N(DI" + a®a’'l]” + aa”"l(/]2
+ali"1}° +a" TN +a' N +a" T+ lolyN (')
+TOTU +a®a" ' +a?a” +d"[a®d'l}° +da'N() + aa”?
+a'™a" +a%lyT U+ T T() + NIy +a®ly +a®a’ly]

a' gl +a"lolg® +d" TG + lol* [ + TN +a"' 1
+a"[lol}” +a"° T +a'TAN+TUDNNI')+a'a"]
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0001 aa'ljl|® + aa"?lpl}° + aa" T (ANJ° + alol)*l}° +aT )N{1")°
+ a“’a”lol(’{“ +a"lgN (") + a”T(l)l(/)‘"l{)“r + N(l)l()l/l/‘7 + aa””"lé
—i—a/a”zlo —i—alga//ol(/) +a’a”li +a’T(l)li/‘7 +a/gT(l/)l(/)/U +a”1+aT(l)
+UN{I") +a"[alol}” +a'T ()" + doly+aad’°T() +ad T
+NOTIN+TA)[a' e —I—a’”lol(’)—i-T(l)li +aN({")+a"N()+aa'a"]

Appendix B: Erratum to [1]

This section serves as an erratum to formula (85) of [1, Lemma 6.3]. The value for Q[4]
should read

Q4] = Q21+ D elulel—ul = e3P+ D elule[—u]
uedg uedg
(ra,u)y=—1 (ro,u)y=—1

(the term Q[2], or equivalently e[3], is missing in the original).
Alternatively

o4 = Z e[ule[—ul.
uedg
(1001,u)=—1

Part 3 of the proof of Lemma 6.3 states that (r3, ;) = 0 except when j = 4, which is correct,
but irrelevant. Instead we should look at (r, r3) which is 1 when both j = 2 or 4, and hence
Oy 1s equal to Q[2] + Q[4] instead of Q[4].

Note that (r;, 0001) = 0 except when j = 4, and hence we may instead restrict the sum
to those u for which (0001, u) = (1001, u) = —1.
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